مقاله رایگان در مورد ابررسانایی

معرفی ابررسانایی

۱-۱ .واقعیات تجربی بنیادی

۱-۱-۱ کشف ابررسانایی

ابررسانایی در سال ۱۹۱۱ در آزمایشگاه لیدن کشف شد. اچ. کامرلینگ اونس به هنگام مطالعه وابستگی دمایی مقاومت ویژه الکتریک نمونه ای از جیوه، مشاهده کرد که در دمای T* نزدیک به k4، مقاومت نمونه ناگهان به صفر سقوط می‌کند و در همه دماهای دسترس پذیر زیر T* مقاومت دیگر قابل اندازه گیری نیست ]۶[. نکته مهم این که با کاهش دما مقاومت ناگهان به صفر می‌رسید نه به تدریج، آشکار بود که نمونه باید دستخوش گذاری به حالت جدیدی با مقاومت الکتریکی صفر شده باشد که در آن زمان ناشناخته بوده است. این پدیده را ابررسانایی نامیدند.

هر گونه تلاش برای یافتن کوچکترین اثری از مقاومت در ابررساناهای کپه ای، راه به جایی نبرد. با توجه به حساسیت وسایل اندازه گیری جدید، می‌توان گفت که مقاومت ویژه ابر رساناها، حداقل تا دقت  ۱۰-۱۰، صفر است. در مقایسه، می‌دانیم که مرتبه بزرگی مقاومت ویژه مس با خلوص بالا در k2/4 برابر است با  ۹-۱۰

مدت کوتاهی پس از کشف ابررسانایی در جیوه، این خاصیت در سایر فلزات، مانند: قلع، سرب، ایندیم، آلومینیوم، نیوبیم و غیره یافت شد. همچنین معلوم شد که تعداد زیادی آلیاژ و ترکیبات بین فلزی نیز ابررسانا هستند.

دمای گذار از حالت عادی به ابررسانایی را دمای بحرانی Tc می‌نامند. زمان کوتاهی پس از این کشف معلوم شد که نه تنها با گرم کردن نمونه، بلکه با قرار دادن آن در میدان مغناطیسی نسبتا ضعیف می‌توان ابر رسانای از بین برد. این میدان، Hcm، را میدان بحرانی ماده کپه ای می‌خوانند.

جدول ۱-۱ دماهای بحرانی میدانهای مغناطیسی بحرانی عناصر ابر رسانا [v].

Hcm(0)/OeTc/KعنصرHcm(0)/OeTc/Kعنصر
۱۸۰۳۴/۱Pa۰۳/۰۹/۱۰۴۰۰۲/۰۱۷۵/۱Al
۵۲۰۰۰۰۶/۰۱۹۶/۷Pb۰۲۶/۱Be
۲۶۹۰۰۶/۰۶۹۷/۱Re۱۲۸۰۰۲/۰۵۱۷/۰Cd
۲۳۰۵۰۱۵/۰۴۹/۰Ru۳/۰۲/۵۹۰۰۱/۰۰۸۳/۱Ga
۶۸۲۹۰۰۱/۰۷۲۲/۳Sn۱۲۸/۰Hf
۱۴۱۰۰۴/۰۴۷/۴Ta۲۴۱۱۰۰۱/۰۱۵۴/۴
۳۱۶۰۰۱/۰۸/۷Tc۳۳۹۹۴۹/۳
۵۶۰۲/۰۳۸/۱Th۲۵/۲۸۱۰۰۱/۰۴۰۸/۳In
۵۱۷۸۰۴/۰۴۰/۰Ti۰۵/۰۱۶۰۰۱/۰۱۱۲۵/۰Ir
۱۴۰۸۰۴/۰۳۸/۲Tl۱۰۸۰۰۰۲/۰۸۸/۴
۳/۰۱۵/۱۰۵/۰۴۰/۵V۱۶۰۰،۱۰۹۶۱/۰۰/۶
۳/۰۵۴۰۰۰/۵۰۱۵۴/۰W۴۰۰<۱/۰Lu
۴۷۰۱/۰۸۵۰/۰Zn۳۹۶۰۰۵/۰۹۱۵/۰Mo
۱۵/۱۶۱/۰Zr۵۰۲۰۶۰۰۲/۰۲۵/۹Nb
۷۰۰۳/۰۶۶/۰Os

در اکثر نوشتارهای انگلیسی زبان، Hcm را میدان بحرانی ترمودینامیکی، Hcth، می‌نامند.

جدول (۱-۱) مقادیر Hcm،Tc را برای تعدادی از عناصر ابر رسانا نشان می‌دهد. در این جا Hcm(0) میدان بحرانی برون یابی شده تا صفر مطلق است. وابستگی دمایی Hcm با رابطه تجربی

Hcm(T)=hcm(0)[1-(T/Tc)2]                                            (۱-۱)

سازگاری خوبی دارد. این وابستگی در شکل ۱-۱ نشان داده است که اصولا نمودار فاز H-T حالت ابر رسانش را نشان می‌دهد. در ناحیه سایه خورده، هر نقطه در صفحه H-T با حالت ابررسانشی همخوان است.

در سالهای اخیر، واژه ابررسانایی به صورت کلمه ای جادویی در آمده است. تصور نمی شود که در حال حاضر فناوری جدید دیگری تا این اندازه توجه عموم را به خود جلب کرده باشد. پس از سالهای ابهام در مورد این پدیده، اکنون ابررسانایی در زمینه های پزشکی، علوم نظری و تجربی، نظامی، ترابری، برق، الکترونیک و موارد زیاد دیگری کاربرد پیدا کرده است.

تقریبا همه روزه رساناهای عمومی در سرتاسر دنیا مطالب جالب و متنوعی را درباره این پدیده، که شدیدا مورد علاقه خوانندگان و شنوندگان بسیاری است، درج و پخش می‌کنند. اگر چه غالبا تحلیهای و پیش گوییهای دانشمندان بعد از یک دوران شکوفایی سریعا رو به افول می‌گذارد، با این همه تب ابررسانایی همچنان سازمانهای مختلف تجاری و دولتی را فرا گرفته است.

در ایالات متحده، عقیده بر این است که ابر رسانایی نقش کلیدی در آینده فناوری این کشور بازی خواهد کرد و نیز می‌تواند به عنوان وسیله ای کار ساز در میدان رقابت فنی با ژاپن مورد استفاده قرار گیرد. دیدگاههای نظامی در مورد ابر رسانایی با کمی تفاوت، بیشتر بر ساخت سلاحهای سریع و دقیق تر و نیز ابزار دیده بانی متمرکز می‌شود. صرف نظر از موارد کاربردی آن، بسیاری از شرکتها در زمینه تجاری ابر رسانای با هم رقابت می‌کنند.

اغلب سازمانهایی که با مسائل فنی سرو کار دارند، از قبیل بل، جنرال الکتریک و آی. بی. ام با این مساله ارتباط تنگاتنگ دارند و نیز فعالیت اصلی بسیاری از شرکتهای جدیدتر بر روی این پدیده متمرکز است.حتی گفته می‌شود که از نظر فناوری، صنعت ابر رسانایی مترادف با صنعت نیمرسانایی است.

به هر حال، ابر رسانای موضوعی بسیار گسترده است. کوشش برای شناخت و یادگیری این پدیده پژوهشگران را با مطالعه و بررسی زمینه های بالقوه دیگر آن از قبیل پزشکی، فیزیک ریز اتمی، شیمی سرامیک، زیر دریاییهایی که عمدتا در امور جنگی از آنها استفاده می‌شود و حتی مسائل سیاسی وامی‌ دارد.

اگر چه ابر رسانایی از سال ۱۹۱۱ برای دانشمندان پدیده ای شناخته شده بوده است، اما اهمیت آن به عنوان یک عامل بالقوه در سالهای اخیر مشخص و مورد توجه قرار گرفته است. حتی می‌توان نقش این پدیده را در پیشبرد صنعت و فناوری با نقش ترانزیستور و لیزر در این زمینه مقایسه کرد.

ابر رسانایی پدیده ای چند چهره است که مزیتهای بسیاری را در ارتباط با فناوری روز ارائه می‌دهد.

ابر رسانایی دارای جنبه های بسیاری است که دانشمندان مختلف به منظور توسعه و پیشرفت این جنبه ها، فعالیت می‌کنند. هدف اصلی این تلاشها به کار گیری عملی ابر رساناها در صنعت و فناوری است. همان گونه که با قرار گرفتن تعدادی ترانزیستور در کنار قطعات دیگر وسیله ای الکترونیکی (مثلا رادیو) ساخته می‌شود، اثر کامل ابر رسانا ها نیز زمانی ظاهر می‌شود که به شکلی عملی مورد استفاده قرار گیرند. برای رسیدن به چنین هدفی تلاش گسترده، به شکل رقابت جهانی، آغاز شده است.

 ابررسانایی

ابررسانایی

ابررسانایی چیست؟

ابررسانایی برای نخستین بار در سال ۱۹۱۱ توسط یک فیزیکدان هلندی به نام هیک کامرلینگ انس[۱] کشف گردید. انس روی اثر دماهای خیلی پایین بر خواص فلزات مطالعه می‌کرد. او در حین آزمایشهایش متوجه شد که اگر جیوه تا دمای k4 سر شود، مقاومتش را در مقابل عبور الکتریسیته از دست می‌دهد (k معرف درجه کلوین است، که در آن صفر کلوین تقریبا برابر ۴۶۰- درجه فارنهایت و یا ۲۷۳- درجه سانتی گراد است.)

به منظور فهم کامل این کشف و پی بردن به اهمیت آن نیاز به این است که در مورد الکتریسیته و جریان الکتریکی اطلاعاتی از قبل داشته باشیم. به شکل خیلی ساده، الکتریسیته حرکت الکترونهاست که جریان الکتریکی نامیده می‌شود.دلیل ایجاد چنین جریانی را در فصل بعد مطالعه خواهیم کرد، اما در حال حاضر فرض می‌کنیم که جریانی از الکترونها وجود داشته باشد. معمولا ماده ای را که در آن الکترونها می‌توانند جریان پیدا کنند رسانا می‌نامند. برای مثال اغلب وسایل الکتریکی دارای سیمی متصل به یک دو شاخه هستند.

معمولا این سیم که رساناست از ماده ای فلزی مانند مس ساخته شده است. زمانی که دو شاخه داخل پریز قرار می‌گیرد جریان الکتریکی در داخل سیم برقرار می‌شود. پریزها توسط سیمهای دیگر به جعبه فیوز متصلند و جعبه فیوز نیز توسط سیمهای رسانا به خطوط قدرت که برق ساختمان را تامین می‌کنند وصل می‌شود.

بنابراین یک رسانا ماده است که می‌تواند جریان الکتریکی را به خوبی از خود عبور دهد. مس رسانای بسیار خوبی است که معمولا سیمها و کابلهای انتقال را از آن می‌سازند. آلومینیوم، نقره و طلا هم رساناهای خوبی هستند. موادی از قبیل شیشه، جیر و چوب که جریان الکتریکی را هدایت نمی کنند، نارسانا یا عایق نامیده می‌شوند. مواد دیگری که جریان الکتریکی را تا اندازه ای هدایت می‌کنند (نه به خوبی رساناهایی مثل مس) نیمرسانا نام دارند.

به هر حال، باید توجه داشت که حتی بهترین رساناها (مانند مس) رساناهای کاملی نیستند زیرا، به علت داشتن مقاومت الکتریکی، درصدی از انرژی الکتریکی عبوری از خود را هدر می‌دهند. مقاومت مانعی در سر راه جریان الکترییسیته است و عایقها به علت داشتن مقاومت بالا جریان الکتریکی را به خوبی از خود عبور نمی دهند. اگر چه مقاومت الکتریکی نیمرسانا ها تا حدی زیاد است اما آن قدر زیاد نیست که مانع عبور جریان الکتریسیته شود. مقاومت رساناها در مقابل عبور جریان کم است. علت وجود مقاومت در مواد مربوط به خواص اتمی آنها می‌شود که در فصل بعد مورد بحث قرار می‌گیرد و این اساس ظاهر شدن پدیده ابررسانایی است.

قبل از سال ۱۹۱۱، حذف مقاومت الکتریکی حتی در بهترین رساناها امکان پذیر نبود. در این سال با کشف پدیده ابررسانایی گونه ای جدید از رسانا که (ابر رسانا) نامیده می‌شوند تولد یافتند. به طور ساده ابر رساناها، موادی هستند که عملا الکتریسیته را بدون هیچ مقاومتی از خود عبور می‌دهند و در نتیجه انرژی الکتریکی به هیچ وجه تلف نمی شود . جدول ۱-۱ مشخصات ۴ دسته از مواد را از نظر رسانایی نشان می‌دهد.

جدول ۱-۱ دسته بندی مواد از نظر رسانایی الکتریکی

مقاومتمثالنام
خیلی بالاشیشهعایق
متوسطسیلیکوننیمرساتا
خیلی پایینمسرسانا
صفربعضی از مواد مشخصابررسانا

آونگی (مثلا یک تاب) را در نظر بگیرید. چنانچه به این آونگ نیرو وارد شود و آن را از حالت تعادل خارج کند، آونگ شروع به نوسان خواهد کرد و پس از مدتی از حرکت می‌ایستد. دلیل توقف آونگ آن است که به علت وجود مقاومت هوا و نیز اصطکاک، انرژی منتقل شده به تاب از بین می‌رود.

حال آونگ یا تابی را در نظر بگیرید که هیچ گاه متوقف نمی شود و زمانی که به نوسان در آید برای همیشه با همان دامنه اولیه به نوسان ادامه دهد. این مثال را می‌تواند برای حالت ابررسانایی نیز به کار برد. همان طور که قبلا گفته شد، در یک رسانا به سبب وجود مقاومت، انرژی الکتریکی سریعا کاهش پیدا می‌کند، در حال که در یک ابر رسانا جریان الکتریکی بدون هیچ گونه تغییراتی برای همیشه پایدار باقی می‌ماند، زیرا هیچ عاملی که بخواهد آن را متوقف سازد وجود ندارد.

انس آزمایشهایش را برای کشف احتمالی ابررسانایی در فلزات دیگر هم ادامه داد. مجبور بود که ماده را در هلیوم مایع نگه دارد. هلیم که غالبا آن را به عنوان یک گاز می‌شناسیم در حدود k4 مایع می‌شود. انس جریان الکتریکی را به حلقه ابر رسانا (جیوه در هلیم مایع) القا کرد و یک سال بعد مشاهده کرد که این جریان در حلقه، بدون هیچ کاهشی، هنوز در حال شارش است.

پس از کشف ابررسانایی و علی رغم شناخت اهمیت آن برای چندین دهه هیچ گونه تلاشی در جهت استفاه عملی از آن انجام نشد. مانع بزرگی که در به کار گیری ابر رساناها وجود داشت، عدم امکان دست یابی به سرمای فوق العاده مورد نیاز بود. وسایل و تجهیزاتی که برای تهیه هلیم مایع و سرد کردن ماده ابررسانا لازم است پیچیده و پر هزینه می‌باشند که حتی امروزه هم به عنوان یک مشکل خود نمایی می‌کند. مشکل دوم عدم توانایی ابر رساناها در تحمل میدانهای مغناطیسی بزرگ است. مدتهاست که از آهن رباهای الکتریکی برای تولید میدان مغناطیسی القا می‌شود.

با جایگزینی ابر رسانا به جای رساناهای معمولی و سرد کردن حلقه به میزان لازم، به نظر می‌رسد که بتوان میدانهای مغناطیسی بسیار قوی تر ایجاد کرد.

به علاوه در این حالت به علت عدم مقاومت الکتریکی حلقه گرم نمی شود. با وجود این زمانی که میدان مغناطیسی تا حد معینی افزایش یابد پدیده ابررسانایی از بین می‌رود و ابر رسانا به یک رسانای معمولی تبدیل می‌شود. در حدود سال ۱۹۴۰ مشکلات مربوط به محدودیت میدان مغناطیسی تا اندازه ای حل شد و در سالهای اخیر با ساخت وسایل پیشرفته و کشف ابر رسانای با دمای بحرانی بالا، مساله رسیدن به دمای پایین مورد نیاز برای ظاهر شدن پدیده ابررسانایی، تا حدی بر طرف گردیده است.

افزایش دمای بحرانی ابررسانایی

همان طورکه قبلا اشاره شد، سرد کردن مواد ابر رسانا تا نزدیک صفر مطلق همواره به عنوان یک مشکل مطرح بوده است. برای رسیدن به دمای k 4 از هلیم مایع استفاده می‌شود. هلیم مایع بسیار گران است و تجهیزات و وسایل مورد نیاز در رابطه با آن نیز فضای نسبتا وسیعی را اشغال می‌کند.

با توجه به هزینه زیاد رسیدن به دمای پایین، جایگزین کردن مواد ابر رسانا به جای رساناهای معمولی، عملی مقرون به صرفه نبوده است. به همین سبب از ابر رساناها بیشتر در موارد خاص از قبیل ساخت آهن رباهای الکتریکی بسیار قوی، که رساناهای معمولی برای چنین کاری مناسب نیستند، استفاده شده است. بنابراین اگر ابررسانایی بخواهد به بیرون از آزمایشگاهها پای بگذارد و وارد صنعت و فناوری شود، در وهله اول لازم است که مشکل سرد کردن حل گردد.

برای غلبه بر این مشکل، دو راه بدیهی وجود دارد. اول پیدا کردن روشی مناسب تر برای سرد کردن ابر رساناها که هزینه خیلی کمی را در بر داشته باشد و دوم بالا بردن دمای بحرانی ابر رسانا، یعنی دمایی که در آن ماده معمولی به ابررسانایی تغییر حالت می‌دهد. به نظر می‌رسد راه دوم یعنی پیدا کردن مواد ابررسانایی که دارای دمای بحرانی بالاتری هستند. روشی مناسب تر و اقتصادی تر است، زیرا گذشته از آن که هزینه های مربوط به سرد کردن کاهش می‌یابد. و وسایل خنک کننده ساده تری نیز نیاز خواهیم داشت.

از آن جا که هلیم مایع بهترین وسیله شناخته شده برای سرد کردن مواد تا نزدیک صفر مطلق به حساب می‌آید، لذا موضوع ابررسانایی می‌بایست تا زمان کشف مواد جدید با دمای بحرانی خیلی بالاتر از صفر مطلق در همان داخل آزمایشگاهها بررسی می‌شد و راه یافتن آن به محیط بیرون هیچ گونه صرفه اقتصادی به دنبال نداشت. دانشمندانی که با مواد مشابه آنچه که انس استفاده می‌کرد.

کار می‌کردند تنها توانستند به مقدار کمی دمای بحرانی ابررسانایی را با ترکیب برخی مواد باهم بالا ببرند، به طوری که در سال ۱۹۳۳ این دما در حدود k10 بود. در سال ۱۹۶۹ این دما به دو برابر یعنی k20 رسید که خود قدم بزرگی بود، زیرا هیدروژن در دمای k20 به مایع تبدیل می‌شود و بنابراین برای اولین بار دانشمندان می‌توانستند از عامل دیگری به غیر از هلیم به عنوان سرد کننده استفاده کنند. چهار سال بعد یعنی در سال ۱۹۷۳، دمای بحرانی به k 23 افزایش یافت. پس از آن برای حدود یک دهه پژوهشگران با ساخت مواد و آلیاژهای مختلف سعی در افزایش بیشتر دمای بحرانی کردند که این تلاشها موفقیت چندانی را در بر نداشت.

در سال ۱۹۸۶ دو پژوهشگر به نامهای آلکس مولر [۲] وجورج بدنورز[۳] در موسسه آی. بی. ام زوریخ ماده سرامیکی جدید ابر رسانای با دمای بحرانی k30 را کشف کردند. این کشف مهم باعث شد که پژوهشگران زیادی مجددا در این زمینه شروع به فعالیت کنند و روی مواد سرامیکی مشابه با آنچه که در موسسه آی. بی. ام کشف شد کار نمایند.

در اواخر سال ۱۹۸۶ دمای بحرانی تا k39 افزایش یافت. در فوریه سال ۱۹۸۷ دکتر چینگ و وچو[۴] و همکارانش در دانشگاه هوستون[۵] کشف ابر رسانای جدیدی با دماهای بحرانی k98 را گزارش نمودند.

این کشف کل جامعه فیزیک را به هیجان آورد به لحاظ آن که مانعی بزرگ، یعنی مشکل سرد کنندگی، تا حدی از سر راه برداشته شده بود. دمای ازت مایع k77 است که بسیار پایین تر از دمای بحرانی، ابررسانایی است که چو گزارش کرده بود.

قیمت هر لیتر ازت مایع بسیار ارزان تر از هلیم و در امریکا حدود ۵۰ سنت است. در صورتی که هر لیتر هلیم مایع چندین دلار می‌ارزد. مزیت دیگر ازت مایع نسبت به هلیم آن است که به راحتی و با استفاده از ظروف عایق قابل حمل است. با این کشف امکان تهیه قطعات و وسایل صنعتی توسط چنین ابر رساناهایی عملی تر به نظر می‌رسد. با وجود این، تلاش برای افزایش دمای بحرانی در ابر رساناها خاتمه نیافته است. دانشمندان در نظر دارند. این دما را به حدود دمای اتاق( k 293) برسانند که در این صورت مشکل سرد کنندگی خودبه خود

حل خواهد شد. اخیرا برخی آزمایشگاهها ادعا کرده‌اند که دانسته‌اند ابر رساناهایی با دمای بحرانی بالای k230 تهیه نمایند که این ادعا هنوز تایید نشده است. (شکل زیر افزایش دمای بحرانی را در طی سالیان متمادی نشان می‌دهد.

البته مسائل زیادی بر سر راه ابر رساناهای جدید قرار دارد که باید حل شود. مثلا اگر چه دمای بحرانی این مواد نسبت به ابر رساناهای سنتی بسیار بالاتر است، اما مواد جدید نمی توانند جریانهای الکتریکی با چگالی خیلی زیاد را از خود عبور دهند.

دیگر آن که شکل دهی این مواد به صورت سیم و حلقه به مراتب مشکل تر است. با وجود این اغلب پژوهشگران معتقدند که این مشکلات به مرور بر طرف خواهد شد. فصل بعد جزئیات بیشتری را در مورد ابر رساناهای جدید، و این که این پدیده چرا و چگونه رخ می‌دهد ارائه خواهد کرد و در پایان موضوعاتی مطرح می‌شوند که به نحوی با ابررسانایی در ارتباطند.

در فصل قبل خلاصه ای در مورد پدیده ابررسانایی و نیز نکاتی در ارتباط با پیشرفتهای اخیر در دست یابی به دماهای بحرانی بالا که در آن ابررسانایی رخ می‌دهد، بیان گردید. در این فصل ابررسانایی را بیشتر از دیدگاه جنبه های فنی آن و نیز خواص اتمی مواد ابر رسانا مورد بررسی قرار می‌دهیم. اما قبل از ادامه بحث لازم است اطلاعاتی کلی در مورد مبحث الکتریسیته و رسانایی ارائه شود.

[۱] Heike kamerlingh Onnes

[۲] Alex Miiller

[۳] Georg Bednorz

[۴] Ching-Wu(Paul)Chu

[۵] Houston

مراحل خرید فایل دانلودی
اگر محصول را می پسندید لطفا آنرا به اشتراک بگذارید.

محصولات مرتبط

دیدگاهی بنویسید

این سایت از اکیسمت برای کاهش هرزنامه استفاده می کند. بیاموزید که چگونه اطلاعات دیدگاه های شما پردازش می‌شوند.

  1. ناشناس :
    26 ژانویه 2020

    عالی

0